Sample Paper 4: Paper 1

Question 5 (25 marks)

Question 5 (a)

This is a bijective function as there is a perfect one to one correspondence between the x and y values. A bijective function means it is both an injective and surjective function.

Injective Function	$\boxed{ }$
Surjective Function	
Bidective Function	$\boxed{ }$

Question 5 (b)

This is a surjective function which means that every y value has at least one matching x value. It is not injective as many y values have more than one corresponding x value.

Question 5 (c)

This is an injective function which means that every y value has its own unique matching x value.

Injective Function		Domain $=\{0,1,2,3,4,5, \ldots\}$. Range $=\{0,1,4,9,16, \ldots \ldots\}$.
Suriective Function	\boldsymbol{X}	Every element in the domain matches to a unique element in the codomain. There are elements in the codomain that do not have a matching element from the domain.
Bijective Function	\boldsymbol{X}	

Question 5 (d)

This is a bijective function as there is a perfect one to one correspondence between the x and y values. A bijective function means it is both an injective and surjective function.

Injective Function	$\boxed{ }$	Domain = \{Positive real numbers $\}$ Range $=\{$ Positive real numbers $\}$
Surjective Function	$\boxed{\checkmark}$	Every element in the domain matches to a unique element in the codomain. Every element in the codomain has a unique matching element from the domain.
Bijective Function	$\checkmark \checkmark$	

Question 5 (e)

This is a surjective function which means that every y value has at least one matching x value. It is not injective as many y values have more than one correspoding x value.

Injective Function	\boldsymbol{x}	Domain $=\{$ All real numbers $\}$ Range $=\{$ Positive real numbers $\}$
Surjective Function	\boldsymbol{V}	Every element in the domain matches to at least one element in the codomain. Some values in the codomain match to two elements in the codomain. For example, 2^{2} and $(-2)^{2}$ both map on to 4.
Bijective Function	\boldsymbol{x}	

Question 5 (f)

This is not a function because x values have two y values.

